

DESCRIPTION

Many years of in-field experience have shown the necessity of more and more efficient controls on the contamination level of hydraulic fluids and fuels.

With this goal uppermost in its mind, and thanks to sophisticated design patterns and the use of cuttingedge materials and technologies, FAI FILTRI has engineered a complete series of spin-on filters, in different models and sizes, designed to meet a wide array of filtration and operating requirements, in order to allow a more effective control of contamination levels in hydraulic, lubricating, engine circuits, etc.

CS-CTT spin-on cartridges are engineered to provide an efficient solution to filtration problems offering their highest performances when fitted into inlet, return and exhaust lines of mobile machineries (such as earthworks machines, agricultural machines, industrial vehicles, compressors, hydraulic systems) with pressure peaks up to 12 bar.

The fundamental characteristic of these elements is the possibility, for any clogged filter, to be easily replaced, by a quick and clean procedure, condition that has to be considered of great importance in working contexts where highly deteriorated environmental conditions usually occur. They can support flow rates up to 270 l/min and each element can be equipped with a by-pass valve and an anti-emptying membrane (CTT series).

FAI FILTRI spin-on cartridges, equipped with newgeneration "A" filtering media, can grant high standards of performance even in the hardest conditions.

"A" type elements with absolute filtration power of 3, 6, 10, 25 micron ($\beta x \ge 200$), are formed by inorganic impregnated and resin bonded inert micro-fibers, supported upstream and downstream. The result is a very compact filtering core which ensures the resistance of the media itself to deformation, distortion and strain ,preventing any contaminants to get released, thus improving filtering performances and allowing contaminants to accumulate efficiently, also in the event of phenomena such as high differential pressure and water hammering derived from cold starts and discharge flow rates.

The above mentioned features make the FAI FILTRI spin-on filters consistent with the use of hydraulic, lubricating oils, fuels, glycol water, emulsions and most synthetic fluids.

TECHNICAL DATA

MATERIALS

- Galvanized stamped plate flange
- Sinned and painted sheet steel vessel
- Derforated/drilled supporting pipes and galvanized steel end-caps

CARTRIDGES PRESSURES VALUES

Max. operating pressure:

Impulse test in compliance with ISO 3724:

TESTS CARRIED OUT ON FILTER ELEMENTS

Differential collapsing pressure of the filtering elements tested in compliance with ISO 2941:

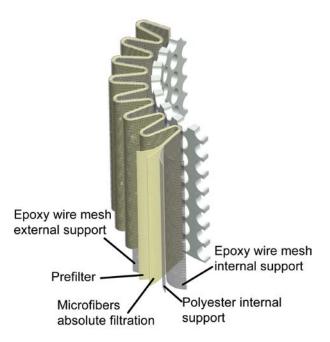
"P" type	5 bar
"A" e "M" types	10 bar

Resistance to axial deformation tested in compliance with ISO 3723

Manufacturing conformity and determination/assessment of the first bubble point in compliance with ISO 2942

from 0-12-0 bar 1Hz 50.000 min. cycles

12 bar


FILTER ELEMENTS

"**P**": 10 and 25 nominal micron made of impregnated cellulose fibers $\beta x > 2$

"A": 3, 6, 10, 16 and 25 absolute micron made of $\beta x \ge 200$ reinforced inorganic microfibers with polyester protections

"M": 60 and 90 nominal micron made of wire net/gauze

New generation "A" filtering elements structure

RETENTION POWER

In compliance with ISO 4572 Multi-pass test method

Filter			sion for Value		Filtration rapports			final ∆P
element	β ≥ 2 50%	β ≥ 20 95%	β≥75 98,7%	β ≥ 200 99,5%	β₂	β10	β ₂₀	(bar)
A03	-	2	2.4	3	20	>10000	>10000	7
A06	-	3	4.6	6	8	>2000	>10000	7
A10	3	6	7.8	10	1.5	≥200	>1000	7
A16	7	9	12	16	-	>25	>5000	7
A25	13	19	22	25	-	>1.5	>35	7
P10	10	>30	>30	-	1	2	4.5	4
P25	25	>30	>30	-	1	1	1.3	4

INTERNATIONAL STANDARDS FOR FLUIDS CONTAMINATION CONTROL

ISO 4406 CONTAMINATION CODES		NAS 1638 CORRESPONDING CLASS	SUGGESTED FILTRATION	APPLICATION FIELDS
5 μm	15 µm		βx ≥ 200	
12	9	3	1-2	High accuracy servo-plants – laboratory
15	11	6	3-6	Servo-plants – robotics – aeronautics
16	13	7	10-12	High sensitivity plants – where high standards of
18	14	9	12-15	operating reliability are required
19	16	10	15-25	General plant engineering with limited reliability
21	18	12	25-40	Low pressure plants – desultory services

BY-PASS VALVES

- Type -1- setting 0,3 bar
- Type -2- setting 1,0 bar
- Type -3- setting 1,75 bar
- Type -4- setting 2,5 bar

GASKETS

Buna-N "A" type gaskets/seals Viton "V" type gaskets/seals

COUPLINGS

For the different coupling see order forms

[Specifically on request]

OPERATING TEMPERATURES

From -25°C up to +110°C

[For different temperatures please contact our technical department]

FLOW RATE

From 20 up to 190 l/min

Choose the cartridge according to the filtration and to the recommended pressure drop.

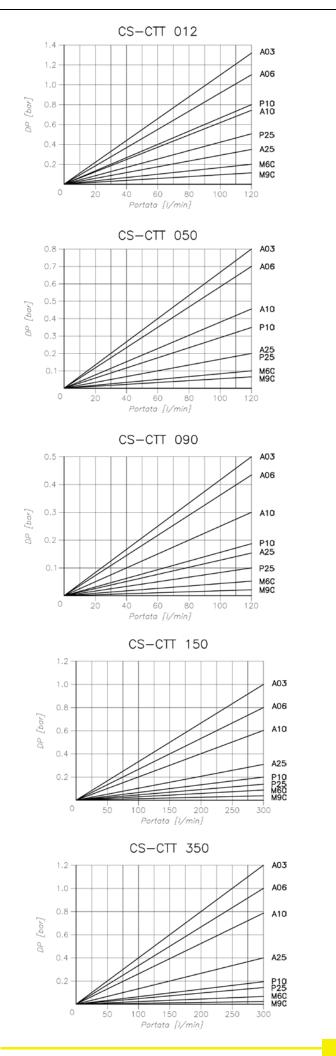
FILTERING SURFACE

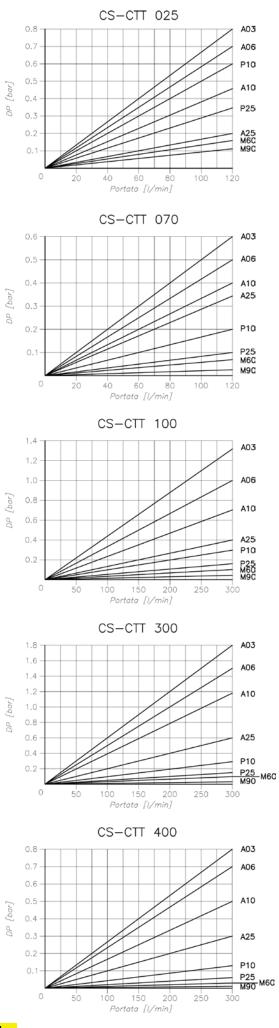
Туре	P10/P25	A03/A06/A10/ A16/A25	M60/M90	Туре	P10/P25	A03/A06/A 10/A16/A2	M60/M90
CS/CTT – 12	2300 cm ²	1370 cm ²	680 cm ²	CS/CTT – 83	3450 cm ²	2900 cm ²	1000 cm ²
CS/CTT – 15	2060 cm ²	1325 cm ²	470 cm ²	CS/CTT – 85	4400 cm ²	3710 cm ²	1360 cm ²
CS/CTT – 20	1270 cm ²	880 cm ²	360 cm ²	CS/CTT – 90	4990 cm ²	4200 cm ²	1575 cm ²
CS/CTT – 25	1460 cm^2	1020 cm ²	470 cm ²	CS/CTT - 100	5000 cm ²	4440 cm ²	1660 cm ²
CS/CTT – 50	2440 cm ²	1700 cm ²	785 cm ²	CS/CTT - 150	6730 cm ²	5980 cm ²	2230 cm ²
CS/CTT – 60	2930 cm ²	2040 cm ²	950 cm ²	CS – 300	6250 cm ²	3580 cm ²	1300 cm ²
CS/CTT – 70	3960 cm ²	2700 cm ²	1275 cm ²	CS – 350	9350 cm ²	5440 cm ²	1980 cm ²
CS/CTT – 80	2100 cm ²	1130 cm ²	680 cm ²	CS - 400	13580 cm ²	7900 cm ²	2770 cm ²

PRESSURE DROP

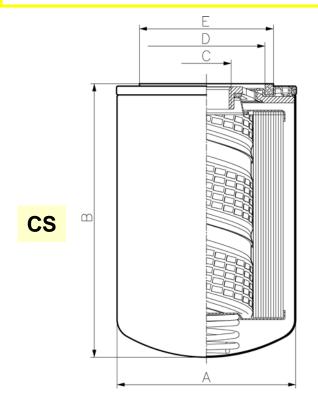
(1)

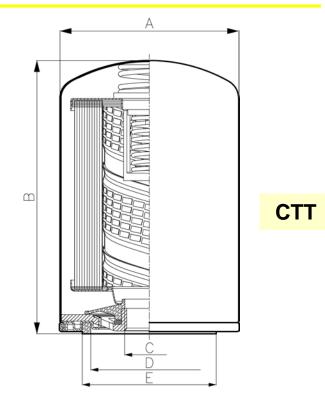
Curves are applicable to mineral oil with a dynamic viscosity of 30 mm²/sec. (cSt). ΔP changes along with the values of dynamic viscosity according to the following formulas:


Dynamic viscosity variations ≤5 △


$$P = \frac{v1}{v} \Delta P$$

② Dynamic viscosity variations >5


$$\Delta P1 = \frac{\frac{v1}{v} + \sqrt{\frac{v1}{v}}}{2} \Delta P$$


In both formulas ΔP stands for the pressure loss calculated on the curves, **v** stands for the reference dynamic viscosity (30 mm²/sec); $\Delta P1$ is the pressure loss to be calculated and **v1** stands for the actual dynamic viscosity of the tested fluid.

DIMENSIONAL INFORMATION

Туре	Flow rate [l/min]	A	В	С	D	E
CS/CTT 012	20	76	120			
CS/CTT 015	20	76	140			
CS/CTT 020	25		95			
CS/CTT 025	20		110			
CS/CTT 050	35	96	148		62,5	71,5
CS/CTT 060	42		170			
CS/CTT 070	55		210			
CS/CTT 080	55		135			
CS/CTT 081	80		230	SEE ORDER CODE		
CS/CTT 083	60	108	180	0022	91,5	102,0
CS/CTT 085	80		230			
CS/CTT 090	100		260			
CS/CTT 100	75 150	126	180			
CS/CTT 150		120	226		96,5	106,5
CS 300	120		175			
CS 350	150	138	230		100,5	109,5
CS 400	190		310			

ORI	DER CODE				
[
	Series				Seals
CS	Nitril (Buna - n)			Α	Nitril (Buna - n)
077	Membrane			V	Viton
СТТ	Anti-emptying				
					Filter element
Туре	e Couplings			P10	Resin impregnated
12				P25	papaer $\beta x \ge 2$
15	1 – 2 - A – E			A03	
20				A06	Inorganic fiber
25				A10	$\beta x \ge 200$
50	0-1-2-3-4-5-B-C-D			A16	p
60				A25	
70				M60	Squared wire mesh net
80				M90	
81					
83	1 - 3 - 4 - H - P				By-pass valve
85 90				<u>0</u> 1	Without by-pass
90 100				2	0,3 bar 1 bar
150	0			3	1,75 bar
300				4	2,5 bar
350	0 – 6 – H – L			T	2,0 501
400	Ionly for CSI				

			Couplings		
	Type 12 ÷ 15	Type 20 ÷ 70	Type 80 ÷ 90	Type 100 ÷ 150	Type 300 ÷ 400
0		3/4" GAS		1 1/4	I" GAS
1		3/4" – 16 UNF			
2	13/16" –	16 UNF			
3		1" – 12	2 UNF		
4		1" 1/8 –	16 UNF		
5		1 1/4"-12 UNF			
6					1"1/2 - 16 UNF
8					1" 1/2 GAS
Α	M20x1,5				
В		M24x2			
С		M33x1.5			
D		M24x1,5			
E	M18x1,5				
Н			M40x2		M42x2
Р			M30x2		
L					M45x2

FAI FILTRI s.r.l. - (Head Quarter) Strada Provinciale Francesca, 7 24040 Pontirolo Nuovo (BG) - Italy Tel. ++39 0363 880024 -Fax ++39 0363 330177 faifiltri@faifiltri.it www.faifiltri.it

www.faifiltri.it faifiltri@faifiltri.it

Divisione Vendite Italia Tel. +39 0363 88 00 24 Fax. +39 0363 33 01 77 vendite@faifiltri.it

Divisione Vendite Export

Sales Department Tel. +39 0363 88 00 24 Fax. +39 0363 33 01 77 sales@faifiltri.it

Divisione Qualità

Quality Department Tel. +39 0363 88 00 24 Fax. +39 0363 33 07 77 quality@faifiltri.it

Divisione Tecnica

Technical Department Tel. +39 0363 88 00 24 Fax. +39 0363 33 07 77 technical@faifiltri.it

Divisione Acquisti

Purchase Department Tel. + 39 0363 88 00 24 Fax. + 39 0363 33 07 77 purchasing@faifiltri.it

Pianificazione Produzione

Planning Department Tel. +39 0363 88 00 24 Fax. +39 0363 33 07 77 pianificazione@faifiltri.it

Amministrazione

Account Department Tel. +39 0363 88 00 24 Fax. +39 0363 33 07 77 account@faifiltri.it

FAI FILTRI Canada Inc.

2871 Brighton Road L6H 6C9 Oakville, Ontario - Canada Phone ++001 9058298037 Fax ++001 9058292039 faifiltri@faifiltri.com www.faifiltri.com

FAI FILTRI Malaysia Sdn. Bhd.

5, Jalan usj 1/6c, su bang jaya 47610 Selangor Darul Ehsan Malaysia Phone 00603 8023 9878 Fax 00603 8023 6878 faifiltri@tm.net.my

